References
[1] N. Gama, B. Godinho, P. Madureira, G. Marques, A. Barros-Timmons, and A. Ferreira, “Polyurethane Recycling Through Acidolysis: Current Status and Prospects for the Future,” Oct. 01, 2024, Springer. doi: 10.1007/s10924-024-03278-6.
[2] K. Wieczorek, P. Bukowski, K. Stawiński, and I. Ryłko, “Recycling of Polyurethane Foams via Glycolysis: A Review,” Sep. 01, 2024, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/ma17184617.
[3] A. Kemona and M. Piotrowska, “Polyurethane recycling and disposal: Methods and prospects,” Polymers, vol. 12, no. 8, 2020, doi: 10.3390/POLYM12081752.
[4] G. Behrendt and B. W. Naber, “the Chemical Recycling of Polyurethanes (Review),” Journal of the University of Chemical Technology and Metallurgy, vol. 44, no. 1, pp. 3–23, 2009.
[5] X. Gu, H. Luo, S. Lv, and P. Chen, “Glycolysis recycling of waste polyurethane rigid foam using different catalysts,” Journal of Renewable Materials, vol. 9, no. 7, pp. 1253–1266, 2021, doi: 10.32604/jrm.2021.014876.
[6] M. Grdadolnik et al., “Insight into Chemical Recycling of Flexible Polyurethane Foams by Acidolysis,” ACS Sustainable Chemistry and Engineering, vol. 10, no. 3, pp. 1323–1332, 2022, doi: 10.1021/acssuschemeng.1c07911.
[7] M. Grdadolnik et al., “Insight into Chemical Recycling of Flexible Polyurethane Foams by Acidolysis,” ACS Sustain Chem Eng, vol. 10, no. 3, pp. 1323–1332, 2022, doi: 10.1021/acssuschemeng.1c07911.
[8] P. Zahedifar, L. Pazdur, C. M. L. Vande Veld, and P. Billen, “Multistage chemical recycling of polyurethanes and dicarbamates: A glycolysis–hydrolysis demonstration,” Sustainability (Switzerland), vol. 13, no. 6, 2021, doi: 10.3390/su13063583.
[9] S. Thiyagarajan, E. Maaskant-Reilink, T. A. Ewing, M. K. Julsing, and J. Van Haveren, “Back-to-monomer recycling of polycondensation polymers: Opportunities for chemicals and enzymes,” RSC Advances, vol. 12, no. 2, pp. 947–970, 2022, doi: 10.1039/d1ra08217e.
[10] X. Gu, S. Lyu, and S. Liu, “Alcoholysis of waste polyurethane rigid foam and its modification with lignin for recovery,” Journal of Renewable Materials, vol. 9, no. 11, pp. 1913–1926, 2021, doi: 10.32604/jrm.2021.015400.
[11] L. Zhao and V. Semetey, “Recycling Polyurethanes through Transcarbamoylation,” ACS Omega, vol. 6, no. 6, pp. 4175–4183, 2021, doi: 10.1021/acsomega.0c04855.
[12] A. Magnin et al., “Enzymatic recycling of thermoplastic polyurethanes: Synergistic effect of an esterase and an amidase and recovery of building blocks,” Waste Management, vol. 85, no. February, pp. 141–150, 2019, doi: 10.1016/j.wasman.2018.12.024.
[13] F. Di Bisceglie, F. Quartinello, R. Vielnascher, G. M. Guebitz, and A. Pellis, “Cutinase-Catalyzed Polyester-Polyurethane Degradation: Elucidation of the Hydrolysis Mechanism,” Polymers, vol. 14, no. 3, p. 411, 2022, doi: 10.3390/polym14030411.
[14] J. Schmidt et al., “Degradation of polyester polyurethane by bacterial polyester hydrolases,” Polymers, vol. 9, no. 2, p. 65, 2017, doi: 10.3390/polym9020065.
[15] P. Skoczinski, M. K. Espinoza Cangahuala, D. Maniar, and K. Loos, “Lipase-Catalyzed Transamidation of Urethane-Bond-Containing Ester,” ACS Omega, vol. 5, no. 3, pp. 1488–1495, 2020, doi: 10.1021/acsomega.9b03203.
[16] A. Magnin, L. Entzmann, E. Pollet, and L. Avérous, “Breakthrough in polyurethane bio-recycling: An efficient laccase-mediated system for the degradation of different types of polyurethanes,” Waste Management, vol. 132, no. August, pp. 23–30, 2021, doi: 10.1016/j.wasman.2021.07.011.
[17] F. Di Bisceglie, F. Quartinello, R. Vielnascher, G. M. Guebitz, and A. Pellis, “Cutinase-Catalyzed Polyester-Polyurethane Degradation: Elucidation of the Hydrolysis Mechanism,” Polymers, vol. 14, no. 3, p. 411, 2022, doi: 10.3390/polym14030411.